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Nonperturbative and perturbative parts of energy eigenfunctions:
A three-orbital schematic shell model
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We study the division of components of energy eigenfunctions, as the expansion of perturbed states in
unperturbed states, into nonperturbative and perturbative parts in a three-orbital schematic shell model pos-
sessing a chaotic classical limit, the Hamiltonian of which is composed of a Hamiltonian of noninteracting
particles and a perturbation. The perturbative parts of eigenfunctions are expanded in a convergent perturbation
expansion by making use of the nonperturbative parts. The division is shown to have the property that, when
the underlying classical system is chaotic, the statistics of the components of the nonperturbative parts whose
relative localization length are close to 1 is in agreement with the prediction of random-matrix theory. When
the underlying classical system is mixed, main bodies of most of the eigenfunctions are found to occupy parts
of their nonperturbative regions, with some of the rest of the eigenfunctions being ‘‘ergodic’’ in their nonper-
turbative regions due to avoided level crossings. In case of the classical system being chaotic, most of the
eigenfunctions are found ‘‘ergodic’’ or almost ‘‘ergodic’’ in their nonperturbative regions. Numerical results
show that the average relative localization length of nonperturbative parts of eigenfunctions is useful in
characterizing the behavior of the quantum system in the process of the underlying classical system changing
from a mixed system to a chaotic one.

DOI: 10.1103/PhysRevE.65.036219 PACS number~s!: 05.45.2a
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I. INTRODUCTION
Energy eigenstates in conservative quantum systems

chaotic classical limits have attracted lots of attention in
past more than two decades in the field of the so-called qu
tum chaos~see, e.g.,@1–4#!. Still there are some propertie
of energy eigenfunctions in classically chaotic systems
have not been studied well. For energy eigenfunctions
pressed in configuration space that are sufficiently irreg
and ‘‘ergodic,’’ it has been found that the statistics of wa
function probability intensities is in agreement with the p
diction of random-matrix theory@5,6#. However, for eigen-
functions taken as the expansion of perturbed states in
perturbed states, the statistics of their components has
found deviating from the prediction of random-matrix theo
~RMT!, when the underlying classical systems are cha
~see, e.g.,@7#!. This is because such eigenfunctions usua
have decaying tails that can be described by perturba
theory ~see, e.g.,@8,9#!, but not by RMT@2,10,11#. The sta-
tistics cannot be made in agreement with the prediction
RMT by simply subtracting components below some thre
old, which would make the number of components below
threshold zero. The problem is how to separate the deca
tails described by perturbation theory from the other parts
eigenfunctions analytically. This problem is also of relevan
to the problem of localization in conservative quantum s
tems@12,13#. Recently, it has been found that dynamical
calization can appear not only in time-dependent syste
@14#, but also in conservative systems@15–18#, the mecha-
nism of which is still unclear.

Quantum systems whose classical limits are in transi
from integrability to chaos are of particular interest in t
field of quantum chaos. Among them, the most intens
studied one is probably the hydrogen atom in a magn
field @19#. In the meantime, there are also many other s
tems that have attracted lots of attention~see, e.g.,@20–24#!.
1063-651X/2002/65~3!/036219~9!/$20.00 65 0362
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For mixed systems described in configuration space, inter
ing progress has been achieved in the understanding of
statistical properties, e.g., by assuming independent
quences of eigenstates from different phase-space com
nents, statistical properties of transition matrix elements h
been found related to the mixed character of phase sp
@25–27#. However, there are still some interesting proble
that have not been investigated well. For example, for eig
functions taken as the expansion of perturbed states in
perturbed ones, whether or not the scope of the main bo
of the eigenfunctions in a given energy region can be e
mated to some extent by using the Hamiltonian matrix e
ments directly, without diagonalizing the Hamiltonian mat
ces. For a classical system in a transition from integrabi
to chaos, the degree of the destruction of integrability can
measured bym, the fraction of chaotic volume in phas
space. But, for quantum systems, only parameters of inte
lation are known, e.g., the parametrization of Brodyet al.
@28#, Berry and Robnik@29#, and Izrailev@30#, although, in
principle, there should exist some parameters directly rela
to properties of quantum systems that can be used to cha
terize the process.

A clue to possible solutions to the above problems com
from a so-called generalization of Brillouin-Wigner perturb
tion theory~GBWPT!, which was proposed in the study of
model system with a bandlike structure of the Hamiltoni
matrix @23#. In ordinary perturbation theories, such as t
Rayleigh-Schro¨dinger perturbation theory and the Brillouin
Wigner perturbation theory, when unperturbed systems h
no degenerate or quite close lying levels, components o
eigenfunction, except the largest one, are expressed in a
turbation expansion by making use of the largest compon
As well known, when the largest component does not do
nate, i.e., when there are other large components, the pe
bation expansion usually diverges. The basic idea underly
©2002 The American Physical Society19-1
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WEN-GE WANG PHYSICAL REVIEW E 65 036219
the GBWPT is that, when perturbation is not weak and
eigenfunction have more than one large components, in s
of the largest component, one can make use ofmore than one
suitably chosen componentsto expand the other componen
in a convergent perturbation expansion. The smallest num
of components made use of in the convergent perturba
expansion gives a natural analytical division of the eig
function into two qualitatively different parts. Such a div
sion is useful in the study of the structure of eigenfunctio
for example, it can be compared with the division of eige
functions into central parts and tails found numerically. F
the so-called Wigner-band random-matrix~WBRM! model
@31# consisting of band random matrices with increasing
agonal elements, it has been found that tails of eigenfu
tions are on average associated with the parts of eigenf
tions expanded in a convergent perturbation expans
termed the perturbative parts of eigenfunctions, with
other parts termed the nonperturbative parts of eigenfu
tions @13#. The division is also useful in approximate calc
lation of eigenfunctions by truncated matrices, since it can
estimated before the exact energies are known@32#.

In this paper, we will give an investigation of the relatio
ship between the two divisions of eigenfunctions mention
above in a dynamical system with a chaotic classical lim
When the two divisions are relevant to each other, it wo
be natural to study statistical properties of the nonpertur
tive parts of eigenfunctions, to see whether they can be
lated to the prediction of RMT. As well known, on the on
hand, perturbed states of a chaotic system usually have
distribution over unperturbed states of regular systems,
the other hand, a wide distribution of eigenfunctions does
necessarily mean that the investigated system is cha
Similarly, we expect there may exist some relationship
tween statistical properties of nonperturbative parts of eig
functions and the prediction of RMT, only when the inves
gated system is chaotic and the reference system is reg
Also in this sense, we are to study properties of eigenfu
tions with respect to their nonperturbative parts, when
underlying classical system undergoes a crossover from
tegrability to chaos.

The dynamical model we will employ in this paper is
three-orbital schematic shell model@33#, in short, the LMG
~Lipkin-Meshkov-Glick! model or Lipkin model, whose
classical counterpart can be chaotic when perturbation
strong enough@7,23,34#. The definition of perturbative and
nonperturbative parts of eigenfunctions used in the cas
the WBRM model@13# is not suitable for the Lipkin model
In Sec. II, we will propose a more general definition f
them, after a recall of the main results of the GBWPT. W
the proposed definition, it will be shown numerically that t
statistics of the nonperturbative parts of eigenfunctions
are sufficiently ergodic is in agreement with the prediction
RMT. Section III will be devoted to a numerical study o
properties of eigenfunctions with respect to their nonper
bative regions, when the underlying classical system un
goes a transition from integrability to chaos. In particular,
average relative localization length of nonperturbative pa
of eigenfunctions will be studied, in comparison with th
classical parameterm, the Brody parameterb, and the ordi-
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nary localization length. Conclusions and discussions will
given in Sec. IV.

II. DEFINITION OF NONPERTURBATIVE PARTS
OF EIGENFUNCTIONS

A. Generalization of Brillouin-Wigner perturbation theory

Before the discussion of the definition of nonperturbat
parts of eigenfunctions, let us first recall the main results
the GBWPT. Consider a Hamiltonian of the formH(l)
5H01lV, whereH0 is an unperturbed Hamiltonian andlV
represents a perturbation withl being a running paramete
The eigenstates of the HamiltoniansH(l) and H0 are de-
noted byua& and uk&, respectively,

H~l!ua&5Ea~l!ua&, H0uk&5Ek
0uk&, ~1!

with the labels a,k51,2, . . . in energy order. In the
GBWPT, for each perturbed stateua&, the set of unperturbed
statesuk& is divided into two subsets, denoted bySa andS̄a ,
and consequently the perturbed state itself is divided into
parts, uas&[PSa

ua& and ua s̄&[QS̄a
ua&, by two projection

operators

PSa
5 (

uk&PSa

uk&^ku, QS̄a
5 (

uk&PS̄a

uk&^ku512PSa
. ~2!

It can be shown thatua s̄& can be expanded in a converge
perturbation expansion by making use ofuas&,

ua s̄&5Tauas&1Ta
2 uas&1•••1Ta

n uas&1•••, ~3!

when the condition

lim
n→`

^au~Ta
† !nTa

n ua&50 ~4!

is satisfied, where

Ta5
1

Ea2H0
QS̄a

lV. ~5!

The condition~4! can be satisfied, when the setSa is large
enough, e.g., as an extreme case, whenS̄a has one unper-
turbed stateuk& only with ^kuVuk&50. However, with in-
creasingSa , the information on properties of eigenfunction
supplied by the GBWPT will be reduced.

As shown in Ref.@13#, the condition~4! is, in general,
equivalent to the requirement thatuluanu,1 for all the states
una&, whereuna& anduan are~right! eigenvectors and eigen
values of

Ua[QS̄a
V

1

Ea2H0
QS̄a

, ~6!

which is an operator in the subspace spanned by unpertu
states inS̄a . Only when ^nauQS̄a

Vua&50, can uluanu be
larger than or equal to 1 under the condition~4!, which is
9-2
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NONPERTURBATIVE AND PERTURBATIVE PARTS OF . . . PHYSICAL REVIEW E 65 036219
quite exceptional and not to be discussed here. As a resu
uluanu,1, the condition~4! can be replaced by

lim
n→`

^fu~Ta
† !nTa

n uf&50, ~7!

with uf& being an arbitrary state. For eachu j & in a setS̄a
satisfying Eq.~4!, expanding the stateQS̄a

lVuas& in the

statesuna&, QS̄a
lVuas&5(nhnuna&, and using the expan

sion of ua s̄& in Eq. ~3!, one can expressCa j5^ j ua& as

Ca j5
1

Ea2Ej
0 (

n
F hn

12luan
^ j una&G~luan!m21, ~8!

wherem is the smallest positive integer for^ j u(QS̄a
V)muas&

not equal to zero@13#. Note that each term in the summatio
on the right hand side of Eq.~8! decreases exponentially wit
increasingm, whenm is larger than 1. According to the valu
of m, the setS̄a can be subdivided into a series of subse
termedGm subregions ofS̄a , that is, theGm subregion is
composed of those unperturbed statesu j & for which
^ j u(QS̄a

V)muas&Þ0 and ^ j u(QS̄a
V)nuas&50 for n,m.

Since an eigenfunction does not necessarily decrease e
nentially inside itsG1 subregion, its main body should gen
erally lie within the region of unperturbed states compos
of Sa and theG1 subregion ofS̄a , termed theB1 region of
Sa in what follows.

B. Definition of nonperturbative parts of eigenfunctions

The above results of the GBWPT suggest that it should
useful to divide the eigenfunction of a perturbed stateua&
into two parts, termed the perturbative~PT! part and the
nonperturbative~NPT! part of the eigenfunction. Corre
spondingly, the set of unperturbed states is divided into
subsets, termed the PT region and the NPT region ofua&,
respectively, with the NPT region being a setSa satisfying
the condition~4! and the PT region being the correspondi
set S̄a .

SupposeSa
min is the smallestSa satisfying the condition

~4! andGm
min is theGm subregion ofS̄a

min . At first sight, Eq.

~3! seems to suggest thatSa
min andS̄a

min should be defined a
the NPT and the PT regions ofua&, respectively. However
detailed analyses of theG1

min subregion show that the situa
tion is in fact more complicated. For example, if there is
unperturbed stateuk& in G1

min that is not coupled directly to

any of the unperturbed states inS̄a
min by the perturbationV,

then, the perturbation expansion ofCak on the right hand
side of Eq.~3! will be truncated witĥ kuTauas& left only and
Eq. ~3! will become just the corresponding stationary Sch¨-
dinger equation,̂kuHua&5EaCak . Clearly, it is unnecessar
to attribute this kind of unperturbed states to the PT region
ua&. On the other hand, for unperturbed statesuk&PG1

min that
are coupled to some unperturbed states inG2

min by V, the
values ofCak should be affected by the fact that exponenti
type decay begins in theG2

min subregion. That is, their abso
03621
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lute values, although do not decrease exponentially, may
smaller than those in theSa

min region, on average, which ha
indeed been observed in the WBRM model@13#. There is
also another problem in definingSa

min as the NPT region of
ua&, namely,Sa

min may not be unique and, in practice, it
usually quite difficult to check if aSa

min obtained numerically
is the global minimum.

The definition of the NPT region of a stateua& suggested
in this paper is that it includes the unperturbed states inSa

min

and those unperturbed states inG1
min that are not coupled

directly to unperturbed states inG2
min by the perturbationV.

By this definition, the NPT region and theSa
min region ofua&

have the sameB1 region and, as a result, theG2 subregion of
the PT region is just theG2

min subregion. From the aspect o
the GBWPT, there are in fact many possible ways to defi
the NPT region ofua&. A reason for us to take the above on
is that, as will be shown numerically below, the NPT parts
eigenfunctions defined in this way may be the largest part
eigenfunctions having the property that, when the underly
classical system is chaotic, for those NPT parts of eigenfu
tions that are sufficiently ergodic, the statistics of their co
ponents is in agreement with the prediction of RMT.

In order to check numerically whether this definition
NPT parts of eigenfunctions have the statistical prope
mentioned above, we employ the Lipkin model, in whi
there areV particles distributed in three orbitals. Here we a
interested in their collective motion only. The unperturb
Hamiltonian and the perturbation of the model are taken
~cf. Ref. @23#!

H05e0K001e1K111e2K22, V5(
t51

4

m tVt , ~9!

where

V15K10K101K01K01, V25K20K201K02K02, ~10!

V35K21K201K02K12, V45K12K101K01K21. ~11!

The operatorsK00, K11, andK22 are particle number opera
tors of the orbitals 0, 1, and 2, respectively, andKrs with r
Þs are the particle raising and lowering operators. In cal
lation, we tookV530 with the dimension of the Hilber
space being 496. The parameters in Eq.~9! were taken
as e050, e1'1.47, e2'2.15, m1'0.069, m2'0.078, m3
'0.085, m4'0.073. With these parameters, the strength
the four terms in the perturbationV are comparable with eac
other. The particle numbers in the three orbitals are go
quantum numbers of the unperturbed systemH0. Denoting
the particle numbers in the orbitals 1 and 2 bym and n,
respectively, the particle number in the orbital 0 isV2m
2n. Using m andn, the unperturbed stateuk& is labeled by
umn&. For this model, the condition~4! can be satisfied,
when uEa2Ek

0u is large enough for each of the unperturb

statesuk& in S̄a .
In the calculation ofSa

min , one should note thatEmn
0

5e1m1e2n and the perturbationV couples unperturbed
states withuDmu and uDnu less than 3 only. In practice, w
9-3
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WEN-GE WANG PHYSICAL REVIEW E 65 036219
first calculate an intermediateSa , denoted bySa
im , in the

following way: ~i! Starting from a setSa including all the
unperturbed states, for eachn, we move statesumn& to the
set S̄a with m first decreasing from the largest value (V
here!, then increasing from the smallest value~zero here!,
until the condition~7! is not satisfied;~ii ! for the setSa
obtained, for eachm, we do the same thing as having be
done forn. In the second step, we try to move out each of
statesumn& in the setSa

im to see if the condition~7! is still
satisfied and finally obtain aSa

min . In numerical calculation,
denoting^fu(Ta

†)nTa
n uf& asXn with uf& being a normalized

vector chosen arbitrarily, Eq.~7! was treated in the way tha
~a! it is regarded as correct, ifXn,1026 when n,104, or
Xn,Xn21000 when n5104; ~b! it is taken as incorrect, if
Xn.1000 whenn,104, or Xn.Xn21000 whenn5104. Nu-
merically, the same NPT regions have been obtained in
ferent ways of trying to move out unperturbed states inSa

im ,
which usually give differentSa

min regions~see Fig. 1 for an
example!. Numerical calculations show that good appro
mations to NPT regions of perturbed states can in fact
obtained by usingSa

im in place ofSa
min , the calculation time

of which is much shorter.
To study statistical properties of NPT parts of eigenfun

tions that are sufficiently ergodic, we make use of their re
tive localization lengthRa . Denoting the normalized value
of wmn5u^mnua&u2 in the NPT region ofua& with Na un-
perturbed states bywmn8 , namely, wmn8 5wmn /A, where A
5(NPTwmn with the summation over the unperturbed sta
in the NPT region of ua&, Ra is defined by Ra

5Ca
N/CGOE , where

Ca
N5expS 2(

NPT
wmn8 ln wmn8 D ~12!

andCGOE'Na/2.07 is the prediction of RMT for the Gauss
ian orthogonal ensemble~GOE! of Na-dimensional random

FIG. 1. Dots and circles indicate the positions of the unp
turbed statesumn& in the nonperturbative region of the sta
ua5260& and those in a locally minimumSa

min region, respectively,
whenl50.6. The solid straight line is the line ofm1n5V11.
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matrices. For NPT parts of eigenfunctions satisfyi
uRa21u,0.02, where 151<a<350 andl50.5,0.6, . . . ,1.0,
the distribution of their components, denoted byf (x), has
been found in good agreement with the prediction of GO
for M-dimensional matrices in the limitM→`,

f GOE~x!5
1

A2p
exp~2x2/2!, ~13!

wherex5Cb iAM with Cb i being components of the eigen
functions of the random matrices@2# @Fig. 2~a!#. In the cal-
culation of f (x), since different eigenfunctions may hav
different numbers of components in their NPT parts and
average absolute values of components in cases of diffe
l are different, we first put components of the eigenfunctio

-

FIG. 2. ~a! The histogram of the distribution of components
the nonperturbative parts of eigenfunctions whose relative local
tion lengthRa are close to 1. Total 53 832 components were used
the calculation of the histogram. The solid curve is the Gauss
distribution predicted by GOE.~b! Same as in~a! for the distribu-
tion of components in theB1 regions of the nonperturbative region
~81 499 components used!. ~c! Same as in~a! for the distribution of
components inSa

e regions~65 905 components used!.
9-4
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NONPERTURBATIVE AND PERTURBATIVE PARTS OF . . . PHYSICAL REVIEW E 65 036219
of the samel together and normalize them, then, put data
different l together and normalize them again.

The requirement thatuRa21u,0.02 itself does not guar
antee the closeness between the statistics of the NPT pa
the eigenfunctions and the prediction of RMT. For examp
similar to Ra , one can introduce relative localization leng
in the B1 regions of NPT regions, denoted byRa

b . For those
B1 regions satisfyinguRa

b21u,0.02, the distribution of their
components has been found higher thanf GOE(x) in the small
component region@see Fig. 3~b!#. This means that the abso
lute values of the components in theG1 subregions of the PT
regions are smaller than those inside the NPT regions
average, which has also been observed numerically in
WBRM model @13,35#. In fact, the statistics of componen
in some regions smaller than theB1 regions has also bee
found to deviate fromf GOE(x). For example, consider th
smallestSa5$uk&:k5p1 ,p111, . . . ,p2% satisfying the con-
dition ~4!, denoted bySa

e , which were used in Ref.@13#.
Similar to the case ofB1 regions, we have calculated th
distribution of components in thoseSa

e regions whose rela
tive localization lengthRa

e is close to 1, and have found
small deviation from the form off GOE(x) in the smallx
region @Fig. 3~c!#. Numerically,Sa

e regions have been foun
usually a little larger than the corresponding NPT regions

FIG. 3. Variation ofR̄, the average relative localization length
nonperturbative parts of eigenfunctions in the middle of energy
gion (a5186–310)~squares connected by solid line!. Together we
show the values ofm ~circles connected by dotted line!, the Brody

parameterb ~triangles connected by dashed line!, and L̄ ~dashed-
dotted curve! in the same energy region.
03621
f

of
,

n
he

III. NONPERTURBATIVE AND PERTURBATIVE PARTS
OF EIGENFUNCTIONS

In this section, we study properties of NPT and PT pa
of eigenfunctions, when the underlying classical system
dergoes a crossover from integrability to chaos. In Sec. III
we discuss numerical results obtained in the middle of
ergy region. Some properties of eigenfunctions manifeste
the variation of localization length are discussed in S
III B.

A. Structure of eigenfunctions and their NPT regions

When the parameterl increases from zero, the integrabi
ity of the classical counterpart of the Lipkin model will b
destroyed gradually. A measure of the destruction is given
the fraction of chaotic volume in phase space denoted bym.
Figure 3 shows the variation ofm with l in the energy re-
gion between the perturbed energiesE186 and E310 of the
corresponding quantum system. The values ofm was calcu-
lated by making use of Monte Carlo methods, in the sa
way as in Ref.@7#. Together, in Fig. 3, we show the variatio
of the Brody parameterb, which were obtained by the bes
fitting of the cumulative form of the Brody distribution
pB(s,b) to the cumulative nearest-level-spacing distributi
*0

sp(x)dx in the corresponding energy region, where

pB~s,b!5Asb exp~2Bs11b!, ~14!

A5~11b!B, B5G11bS 21b

11b D . ~15!

To obtain a better statistics, we have used data obtained f
ten values ofH(l8) with l8 close tol (dl,0.025). We
see that the variation ofb is quite irregular and, whenl is
between 0.6 and 0.7, the values ofb are quite lower than
m'1.0. The cumulative nearest-level-spacing distributio
of l50.4, 0.6, and 0.8 are presented in Fig. 4, in compa
son with the prediction of the Wigner surmise@3# ~dotted
curves!, pW(s)5(ps/2)exp(2ps2/4), and the best fitting cu-
mulative Brody distributions~dashed curves!.

The average of relative localization lengthRa of NPT
parts of eigenfunctions, denoted byR̄, can be used to char
acterize the behavior of the quantum system in the proces
the underlying classical system changing from an integra
system to a chaotic one. Variation ofR̄ with l, with average
taken over the states ofa5186–310, is shown in Fig. 3 by

-

-

-
s
-

e

FIG. 4. Cumulative nearest
level-spacing distributions in the
middle of energy region~solid
curves!; ~a! l50.4, ~b! l50.6,
and ~c! l50.8. The nearest-level
spacing distributions themselve
are shown in the insets. The pre
diction of Wigner surmise are
given by dotted curves and th
best fitting Brody distributions
and their cumulative forms are
shown by dashed curves.
9-5
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WEN-GE WANG PHYSICAL REVIEW E 65 036219
squares connected by solid line. We see thatR̄ becomes al-
most saturated and close tom, whenl is larger than 0.7. The
behavior ofR̄ is obviously more regular thanb. For l be-
tween 0.2 and 0.7, the values ofm are closer toR̄ than tob.
~The behavior ofb has been found more regular, when eith
the energy region is enlarged or the particle numberV is
increased to 40 so that more energy levels are taken
account. But, in both cases, the behavior ofb has been found
still more irregular thanR̄ and the values ofb in the param-
eter regime 0.6<l<0.7 obviously smaller thanR̄ as well.!
For comparison, Fig. 3 also gives the variation ofL̄5^La&,
the average of the relative localization length of the wh
eigenfunctions defined in the ordinary way.

Now let us discuss detailed properties of NPT parts
eigenfunctions in the middle of energy region. When the p
turbation is sufficiently weak, the ordinary perturbatio
theory works and the NPT region of a perturbed stateua& is

FIG. 5. Variation of^Na&, the average number of unperturbe
states in the nonperturbative regions of perturbed states in
middle of energy region (a5151–350)~circles connected by solid
curve!. Triangles~connected by dotted line! and squares~connected
by dashed line! show the values ofNa for the ground state and th
ninth excited state (a510), respectively.
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r

to

e

f
r-

just the unperturbed stateuk& of k5a. In this case,Ra

'2.07. With increasingl, the sizes of both the NPT region
and the main bodies of eigenfunctions will enlarge. Figur

shows that the increasing ofR̄ starts atl'0.09. The varia-
tion of ^Na& is given in Fig. 5. Numerically, for a fixedl,
perturbed states with similar energies have been found h
ing NPT regions with qualitatively similar structures.

Examples of the shapes of NPT regions and theirB1 re-
gions ofua5260& in cases ofl from 0.05 to 0.7 are given in
Fig. 6, with the main bodies of the eigenfunctions sho
schematically by crosses. In Fig. 6~b!, the NPT region is
roughly along a slanted straight line with a slope close
22/3. This is because the energies of the unperturbed s
umn& in the NPT region are close toE260 with e1 /e2'2/3.
When the classical system is mixed, eigenfunctions h
been found composed of three parts, namely, main bo
localized in theirB1 regions, tails inside theB1 regions with
relatively slow decaying speed, and tails outside of theB1

regions with relatively fast decaying speed. The phenome
that the main bodies do not occupy the full NPT regions
related to the fact that the GBWPT, derived from t
eigenequation of energy, does not consider the destructio
the other conserved quantities ofH0. As to the behavior of
eigenfunctions outside of theB1 regions, as predicted by th
GBWPT, exponential-type decay has been found, on ave
~Fig. 7!. Eigenfunctions ergodic or almost ergodic in the
NPT regions have also been found, whose eigenenergie
in avoided-level-crossing regions.

In the case of the classical system being almost chao
namely,l>0.5, most of the eigenfunctions have been fou

ergodic or almost ergodic in their NPT regions, withR̄ larger
than 0.9~Fig. 3!. In agreement with the feature off (x) at
smallx shown in Fig. 2~b!, for eigenfunctions ofl>0.5, the
values ofwmn in theG1 subregions of their PT regions hav
been found smaller than those in their NPT regions, on
erage. Meanwhile, there are also some eigenfunctions
fully ergodic in their NPT regions, with large components
the smalln, or smallm, or m1n'V region~s!, such as the

he
r-

ive

n
es,
FIG. 6. Nonperturbative regions of the pe
turbed statesua5260& in cases of different per-
turbation parameterl, ~a! l50.05, ~b! l50.1,
~c! l50.2, ~d! l50.3, ~e! l50.5, and ~f! l
50.7. Circles in~a! and ~b! indicate positions of
the unperturbed statesumn& in the nonperturba-
tive regions. Solid and dashed curves in~b!–~f!
show the rough boundaries of the nonperturbat
regions and theirB1 regions, respectively. The
main bodies of the eigenfunctions are show
schematically by crosses. Length of the cross
with centers at (m,n), are proportional towmn

5u^mnua&u2. For the eigenfunctions in~a!–~f!,
sw5(crosswmn'0.97.
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one shown in Fig. 6~e!, which makeR̄ less than 1. To under
stand this phenomenon, we have studied the values ofv t

mn ,

v t
mn5 (

m8n8
^m8n8um tVtumn&, ~16!

which are plotted schematically by the length of the cros
in Fig. 8. We see that the perturbationV has relatively small
elements in them1n'V region and only one of its fou
terms has large elements in the smallm or smalln region.

Nonperturbative regions of low lying states have featu
different from those in the middle of energy region. For e
ample, sinceE1 is lower thanE1

0 and the distanceuE12E1
0u

increases with increasingl, the sizes of the NPT regions o
perturbed ground states are much smaller than those in
middle of energy region. An interesting feature of the N
regions of perturbed ground states ofl>0.5 is that they
move to some regions above the point~0,0! in the (m,n)

FIG. 7. The values of lnwmn with n50 ~circles connected by
dotted line! and withn510 ~squares connected by dashed line! for
the eigenfunction shown in Fig. 6~c!. The vertical dotted straigh
lines and dashed straight lines show the boundaries of the non
turbative region in the corresponding cases, respectively.
03621
s

s
-

he

plane, which is due to the fact that the values ofuE12E1
0u are

large for largel and the elements of the perturbationV are
relatively small in the neighborhood of (0,0)~see Fig. 8!.
Variation of the sizes of NPT regions ofa51 and 10 withl
are also shown in Fig. 5.

B. Some features of eigenfunctions manifested in the variation
of relative localization length

Some features of eigenfunctions can be seen in the va
tion of their relative localization lengthLa with the pertur-
bation parameterl. Two examples are given in Fig. 9, whic
show large fluctuations ofLa due to the ‘‘exchange’’ of states
in avoided-level-crossing~ALC! regions. Detailed variation
of La and Ra in the parameter regime 0.2<l<0.5 are
shown in Figs. 10~b! and 10~c!, respectively. Comparing
with the variation of eigenenergies shown in Fig. 10~a!, we
see that peaks ofLa and Ra indeed correspond to ALC re
gions. Figure 10~b! shows that the value ofLa usually in-
creases steadily outside of ALC regions.

er-

FIG. 9. Variation ofLa , the relative localization length of whole
eigenfunctions, withl for a5203 ~solid curve! and a5204
~dashed curve!.
FIG. 8. Length of the crosses at (m,n) are
proportional tov t

mn in Eq. ~16!; ~a! t51, ~b! t
52, ~c! t53, and~d! t54.
9-7



n
he
e

ng
in
r

o

e

-

tur-
hell
s a
a

ith
ver-
tur-
n to
tem
ns

tics
of

r-
ally.
per-
ain

ba-
re-
ing
ave
ing,

e
n-
ive
ical
ave
ba-
tive
ns
ys-
ng-

the
a-

ties

WEN-GE WANG PHYSICAL REVIEW E 65 036219
Figure 10~c! shows that the values ofRa at some of the
peaks exceed 1, e.g., the one atl'0.3, i.e., ALC can induce
‘‘ergodicity’’ of eigenfunctions. To show this phenomeno
more clearly, in Fig. 11 we show the main bodies of t
eigenfunctions ofa5203 and 204 before, at, and after th
ALC at l'0.3, respectively, together with the correspondi
NPT andB1 regions. The mixing and separation of the ma
bodies of the two eigenfunctions can be seen quite clea
with positions exchanged after the ALC. Figures 10~b! and
10~c! show that there are also some eigenfunctions whoseLa
andRa are relatively small compared with the other levels
the samel, e.g., theR203 in the neighborhood ofl50.325.
For such eigenfunctions, it has been found that their larg

FIG. 10. ~a! Variation of Ea with l (a5201–206).~b! Varia-
tion of La with l for a5203 ~solid curve! and a5204 ~dashed
curve!. ~c! Same as~b! for Ra .
03621
ly,

f

st

components usually lie in the (m,n) regions where the per
turbation matrix elements are relatively small.

IV. CONCLUSIONS AND DISCUSSIONS

In this paper, we have studied nonperturbative and per
bative parts of energy eigenfunctions in a schematic s
model, when the underlying classical system undergoe
transition from integrability to chaos. We have introduced
definition of nonperturbative parts of eigenfunctions, w
the corresponding perturbative parts expanded in a con
gent perturbation expansion by making use of the nonper
bative parts. The nonperturbative parts have been show
have the property that, when the underlying classical sys
is chaotic, for those nonperturbative parts of eigenfunctio
whose relative localization length are close to 1, the statis
of their components is in agreement with the prediction
random-matrix theory.

Nonperturbative parts of eigenfunctions in different pe
turbation parameter regimes have been studied numeric
With increasing perturbation parameter, sizes of the non
turbative parts have been found to increase, with the m
bodies of the eigenfunctions usually lying within theB1 re-
gions of their nonperturbative regions in the whole pertur
tion parameter regime, and within their nonperturbative
gions when perturbation is not weak. When the underly
classical system is mixed, most of the eigenfunctions h
been found to be composed of three parts, roughly speak
main bodies localized in the nonperturbative/B1 regions, tails
inside the nonperturbative/B1 regions, and tails outside th
nonperturbative/B1 regions; meanwhile, some of the eige
functions have been found ergodic in their nonperturbat
regions due to avoided level crossings. When the class
system becomes chaotic, most of the eigenfunctions h
been found ergodic or almost ergodic in their nonpertur
tive regions. Numerical results show that the average rela
localization length of nonperturbative parts of eigenfunctio
is useful in characterizing the behavior of the quantum s
tem, in the process of the underlying classical system cha
ing from a mixed system to a chaotic one.

Numerical results presented in this paper show that
division of eigenfunctions into perturbative and nonperturb
tive parts is indeed useful in revealing interesting proper
ns
FIG. 11. Schematic plot~by crosses! of the
main bodies of the eigenfunctions ofa5203 and
204, with respect to their nonperturbative regio
and the correspondingB1 regions, before and af-
ter the avoided level crossing atl'0.3 in ~a!.
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of the eigenfunctions. The numerical calculation of the di
sion is somewhat time consuming. However, when appro
mate results are required only, the calculation time can
reduced considerably by, for example, making use of
intermediate regions discussed in Sec. II of this paper.
analytical study of the convergence condition in the GBW
may reduce the calculation time as well. Although the de
nition of the division adopted in this paper is better than
one used previously, it is possibly not the final one, since
separation of theG1

min subregion into its subperturbative an
subnonperturbative parts is not made completely from g
eral requirements, but, in fact, to some extent from numer
results obtained. A possible improvement of the definit
may be including all the locally minimalSa

min regions, the
calculation time of which would be considerably long.

Properties of nonperturbative parts of energy eigenfu
tions have been studied in a specific model with a fin
Hilbert space in this paper. Since the convergence condi
.-

,

.

v.

ev

.

v.

s.

t.

03621
-
i-
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e
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T
-
e
e

n-
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-
e
n

for the perturbative parts of eigenfunctions can always
satisfied when the corresponding nonperturbative parts
taken large enough, separation of eigenfunctions into per
bative and nonperturbative parts can be made in an arbit
system, even when the Hilbert space is infinite. The prob
is how much useful information the separation could supp
In fact, for some systems with infinite Hilbert spaces, e.
the quartic anharmonic oscillator, the separation does
supply as much information as in the case of finite Hilb
space. For such systems, in order to obtain more usefu
formation, the present form of the GBWPT should by mo
fied, which needs further research work.
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