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Nonperturbative and perturbative parts of energy eigenfunctions:
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We study the division of components of energy eigenfunctions, as the expansion of perturbed states in
unperturbed states, into nonperturbative and perturbative parts in a three-orbital schematic shell model pos-
sessing a chaotic classical limit, the Hamiltonian of which is composed of a Hamiltonian of noninteracting
particles and a perturbation. The perturbative parts of eigenfunctions are expanded in a convergent perturbation
expansion by making use of the nonperturbative parts. The division is shown to have the property that, when
the underlying classical system is chaotic, the statistics of the components of the nonperturbative parts whose
relative localization length are close to 1 is in agreement with the prediction of random-matrix theory. When
the underlying classical system is mixed, main bodies of most of the eigenfunctions are found to occupy parts
of their nonperturbative regions, with some of the rest of the eigenfunctions being “ergodic” in their nonper-
turbative regions due to avoided level crossings. In case of the classical system being chaotic, most of the
eigenfunctions are found “ergodic” or almost “ergodic” in their nonperturbative regions. Numerical results
show that the average relative localization length of nonperturbative parts of eigenfunctions is useful in
characterizing the behavior of the quantum system in the process of the underlying classical system changing
from a mixed system to a chaotic one.
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[. INTRODUCTION For mixed systems described in configuration space, interest-

Energy eigenstates in conservative quantum systems witimg progress has been achieved in the understanding of their
chaotic classical limits have attracted lots of attention in thestatistical properties, e.g., by assuming independent se-
past more than two decades in the field of the so-called quamuences of eigenstates from different phase-space compo-
tum chaos(see, e.g.[1-4]). Still there are some properties nents, statistical properties of transition matrix elements have
of energy eigenfunctions in classically chaotic systems thalbeen found related to the mixed character of phase space
have not been studied well. For energy eigenfunctions ext25—27. However, there are still some interesting problems
pressed in configuration space that are sufficiently irregulathat have not been investigated well. For example, for eigen-
and “ergodic,” it has been found that the statistics of wavefunctions taken as the expansion of perturbed states in un-
function probability intensities is in agreement with the pre-perturbed ones, whether or not the scope of the main bodies
diction of random-matrix theory5,6]. However, for eigen- of the eigenfunctions in a given energy region can be esti-
functions taken as the expansion of perturbed states in ummated to some extent by using the Hamiltonian matrix ele-
perturbed states, the statistics of their components has beements directly, without diagonalizing the Hamiltonian matri-
found deviating from the prediction of random-matrix theory ces. For a classical system in a transition from integrability
(RMT), when the underlying classical systems are chaotito chaos, the degree of the destruction of integrability can be
(see, e.g.[7]). This is because such eigenfunctions usuallymeasured byu, the fraction of chaotic volume in phase
have decaying tails that can be described by perturbatiospace. But, for quantum systems, only parameters of interpo-
theory (see, e.9.[8,9]), but not by RMT[2,10,11. The sta- lation are known, e.g., the parametrization of Broglyal.
tistics cannot be made in agreement with the prediction of28], Berry and RobniK29], and Izrailev[30], although, in
RMT by simply subtracting components below some threshprinciple, there should exist some parameters directly related
old, which would make the number of components below the&o properties of quantum systems that can be used to charac-
threshold zero. The problem is how to separate the decayingrize the process.
tails described by perturbation theory from the other parts of A clue to possible solutions to the above problems comes
eigenfunctions analytically. This problem is also of relevancefrom a so-called generalization of Brillouin-Wigner perturba-
to the problem of localization in conservative quantum systion theory(GBWPT), which was proposed in the study of a
tems[12,13. Recently, it has been found that dynamical lo- model system with a bandlike structure of the Hamiltonian
calization can appear not only in time-dependent systemmatrix [23]. In ordinary perturbation theories, such as the
[14], but also in conservative systerfls5—1§, the mecha- Rayleigh-Schrdinger perturbation theory and the Brillouin-
nism of which is still unclear. Wigner perturbation theory, when unperturbed systems have

Quantum systems whose classical limits are in transitiomo degenerate or quite close lying levels, components of an
from integrability to chaos are of particular interest in the eigenfunction, except the largest one, are expressed in a per-
field of quantum chaos. Among them, the most intenselyturbation expansion by making use of the largest component.
studied one is probably the hydrogen atom in a magneti@s well known, when the largest component does not domi-
field [19]. In the meantime, there are also many other sysnate, i.e., when there are other large components, the pertur-
tems that have attracted lots of attentisee, e.g.[20—24)). bation expansion usually diverges. The basic idea underlying
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the GBWPT is that, when perturbation is not weak and amary localization length. Conclusions and discussions will be
eigenfunction have more than one large components, in steagven in Sec. V.

of the largest component, one can make usaaife than one

suitably chosen componerits expand the other components Il. DEFINITION OF NONPERTURBATIVE PARTS

in a convergent perturbation expansion. The smallest number OF EIGENFUNCTIONS

of components made use of in the convergent perturbation
expansion gives a natural analytical division of the eigen-
function into two qualitatively different parts. Such a divi-  Before the discussion of the definition of nonperturbative
sion is useful in the study of the structure of eigenfunctionsparts of eigenfunctions, let us first recall the main results of
for example, it can be compared with the division of eigen-the GBWPT. Consider a Hamiltonian of the forhi(\)
functions into central parts and tails found numerically. For=Hg+ AV, whereH, is an unperturbed Hamiltonian and/

the so-called Wigner-band random-mat(WBRM) model  represents a perturbation wikhbeing a running parameter.
[31] consisting of band random matrices with increasing di-The eigenstates of the Hamiltoniakig¥\) and H, are de-
agonal elements, it has been found that tails of eigenfuncaoted by|a) and|k), respectively,

tions are on average associated with the parts of eigenfunc-

A. Generalization of Brillouin-Wigner perturbation theory

— _ =0
tions expanded in a convergent perturbation expansion, HV) @) =Eq (M), Holk)=E[k), D
termed the perturbative parts of eigenfunctions, with the . ,
other parts termed the nonperturbative parts of eigenfuncith the labels «,k=1,2,... in energy order. In the

tions[13]. The division is also useful in approximate calcu- GBWPT, for each perturbed stafie), the set of unperturbed
lation of eigenfunctions by truncated matrices, since it can betategk) is divided into two subsets, denoted 8y andS,,,
estimated before the exact energies are knfsaj. and consequently the perturbed state itself is divided into two

In this paper, we will give an investigation of the relation- parts, Ias>EP5a|a) and |a§)EQ§a|a>, by two projection
ship between the two divisions of eigenfunctions mentionetperators
above in a dynamical system with a chaotic classical limit.

When the two divisions are relevant to each other, it would B

be natural to study statistical properties of the nonperturba- Psf“(gs k) (K], Qs,= Ef [K)(k[=1~ Ps, @
tive parts of eigenfunctions, to see whether they can be re- “ [ & Sa

lated to the prediction of RMT. As well known, on the one j; can be shown thate) can be expanded in a convergent
hand, perturbed states of a chaotic system usually have widgtyrbation expansion by making use|at),

distribution over unperturbed states of regular systems, on

the other hand, a wide distribution of eigenfunctions does not lag) =Tolag+Ti|lagd+ - +T0ad+---, ©)
necessarily mean that the investigated system is chaotic.

Similarly, we expect there may exist some relationship bewhen the condition

tween statistical properties of honperturbative parts of eigen-

functions and the prediction of RMT, only when the investi- lim (a|(TH"T|a)=0 (4)
gated system is chaotic and the reference system is regular. n—o

Also in this sense, we are to study properties of eigenfunc-

tions with respect to their nonperturbative parts, when thds satisfied, where

underlying classical system undergoes a crossover from in-
tegrability to chaos.

The dynamical model we will employ in this paper is a
three-orbital schematic shell mod&3], in short, the LMG
(Lipkin-Meshkov-Glick model or Lipkin model, whose The condition(4) can be satisfied, when the s8f is large
classical counterpart can be chaotic when perturbation ienough, e.g., as an extreme case, wBgrhas one unper-
strong enougli7,23,34. The definition of perturbative and turbed statglk) only with (k|V|k)=0. However, with in-
nonperturbative parts of eigenfunctions used in the case afreasingS,, the information on properties of eigenfunctions
the WBRM model[13] is not suitable for the Lipkin model. supplied by the GBWPT will be reduced.

In Sec. II, we will propose a more general definition for ~ As shown in Ref[13], the condition(4) is, in general,
them, after a recall of the main results of the GBWPT. Withequivalent to the requirement thatu,,,| <1 for all the states
the proposed definition, it will be shown numerically that the|, ), where|v,) andu,, are(right) eigenvectors and eigen-
statistics of the nonperturbative parts of eigenfunctions thayalyes of

are sufficiently ergodic is in agreement with the prediction of

RMT. Section Il will be devoted to a numerical study of

properties of eigenfunctions with respect to their nonpertur- U,=QsV—Qg, (6)
bative regions, when the underlying classical system under- a

goes a transition from integrability to chaos. In particular, the .= . .

average relative localization length of nonperturbative partg"h'Ch Is an operator in the subspace spanned by unperturbed
of eigenfunctions will be studied, in comparison with the States inS,. Only when(r,|Qs V|a)=0, can|\u,,| be
classical parameteu, the Brody paramete8, and the ordi- larger than or equal to 1 under the conditi¢f), which is

1
Ty==—Qs V. (5)
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quite exceptional and not to be discussed here. As a result ddite values, although do not decrease exponentially, may be

|\u,,|<1, the condition(4) can be replaced by smaller than those in thsfi” region, on average, which has
_ : indeed been observed in the WBRM mod#BJ. There is
lim (¢|(T,)"Tol ) =0, (7)  also another problem in definirg"" as the NPT region of

n—oo

|), namely,S™" may not be unique and, in practice, it is
_ _ , o — usually quite difficult to check if &M obtained numerically
with |¢> being an arbitrary state. For eaf in a setS,  is the global minimum. “

satisfying Eq.(4), expanding the stat@s \V|as) in the The definition of the NPT region of a state) suggested
states|v,), Qs \V|as)=3,h,|v,), and using the expan- in this paper is that it includes the unperturbed state3iA
sion of |a) in Eq. (3), one can expres§ ,;=(j|a) as and those unperturbed states (Bﬁ'_“” that are not coupled
directly to unperturbed states ®5"" by the perturbatiorV.
By this definition, the NPT region and 8" region of|«)
have the samB, region and, as a result, tlé&, subregion of

the PT region is just th&)'"™ subregion. From the aspect of

wherem is the smallest positive integer fo|(Q§ﬂV)”‘| ag)  the GBWPT, there are in fact many possible ways to define

not equal to zer$13]. Note that each term in the summation f[he NPT region ofa). A reason for us to take the above one

on the right hand side of E@B) decreases exponentially with S that, as ‘_Ni" be s_howr! numerically below, the NPT parts of
increasingm, whenmis larger than 1. According to the value eigenfunctions defined in this way may be the largest parts of

. _ . eigenfunctions having the property that, when the underlying
of m, the setS, can be subdivided into a series of SUDSELS ), ggicy| system is chaotic, for those NPT parts of eigenfunc-

termedGy, subregions ofS,, that is, theGy, subregion is tions that are sufficiently ergodic, the statistics of their com-
composed of those unperturbed statgg for which  ponents is in agreement with the prediction of RMT.
(il(QsV)Mas)#0 and (j|(Qs V)"as)=0 for n<m. In order to check numerically whether this definition of
Since an eigenfunction does not necessarily decrease expNPT parts of eigenfunctions have the statistical property
nentially inside itsG; subregion, its main body should gen- mentioned above, we employ the Lipkin model, in which
erally lie within the region of unperturbed states composedhere are) particles distributed in three orbitals. Here we are

of S, and theG, subregion ofS, , termed theB, region of  interested in their collective motion only. The unperturbed

.y

— (Au)™ L (@)
a j v

aj

TENTIRULL

S, in what follows. Hamiltonian and the perturbation of the model are taken as
(cf. Ref.[23])
B. Definition of nonperturbative parts of eigenfunctions 4
The above results of the GBWPT suggest that it should be Ho=€oKoot €1K111+ €5K 2, V=21 uVe,  (9)

useful to divide the eigenfunction of a perturbed statg

into two parts, termed the perturbativ®T) part and the \yhere

nonperturbative(NPT) part of the eigenfunction. Corre-

spondingly, the set of unperturbed states is divided into two V1=K Kot KoiKoi,  Vo=KyoKoot+ KoKy, (10)
subsets, termed the PT region and the NPT regiopaof

respectively, with the NPT region being a st satisfying V3=KoKogt KooKia,  Va=KiKio+tKgiKy. (1)
the condition(4) and the PT region being the corresponding
setS,. The operator&Kqg, Ki1, andK,, are particle number opera-

SupposeS™™ is the smalless, satisfying the condition OrS of thhe orbitalls 0, 1, and i Irespectively, aad with r |
min - . —nin . : #s are the particle raising and lowering operators. In calcu-
(4) andGy, " is the Gy, subregion ofS, ™. At first sight, Eq. lation, we took{)=30 with the dimension of the Hilbert

(3) seems to suggest thaf" and S should be defined as gpace being 496. The parameters in E9). were taken
the NPT and the PT regions é#), respectively. However, 5g €0=0, e,~1.47, €,~2.15, u;~0.069, u,~0.078, 13
detailed analyses of th@]"" subregion show that the situa- ~(.085, 4,~0.073. With these parameters, the strength of
tion is in fact more complicated. For example, if there is anthe four terms in the perturbatidhare comparable with each
unperturbed statg) in G1'"" that is not coupled directly to  other. The particle numbers in the three orbitals are good
any of the unperturbed states 8]'" by the perturbation/, ~ quantum numbers of the unperturbed systdm Denoting
then, the perturbation expansion 6f, on the right hand the particle numbers in the orbitals 1 and 2 fyand n,
side of Eq.(3) will be truncated with(k|T | a) left only and ~ respectively, the particle number in the orbital 0(s-m

Eq. (3) will become just the corresponding stationary Sehro —n. Usingm andn, the unperturbed stai&) is labeled by
dinger equation(k|H|)=E,C,. Clearly, it is unnecessary |mn). For this model, the conditiori4) can be satisfied,
to attribute this kind of unperturbed states to the PT region ofvhen|E,— E(k’l is large enough for each of the unperturbed
|). On the other hand, for unperturbed statess GI""that  statesk) in S,.

are coupled to some unperturbed statesGi" by V, the In the calculation ofS™, one should note thaES,,
values ofC , should be affected by the fact that exponential-=e;m+ e,n and the perturbatior’V couples unperturbed
type decay begins in th@83"" subregion. That is, their abso- states withl Am| and|An| less than 3 only. In practice, we
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FIG. 1. Dots and circles indicate the positions of the unper- 0.15 ]
turbed statesimn) in the nonperturbative region of the state 0.1 .
|@=260) and those in a locally minimur8"" region, respectively, 0.05 8

when\ =0.6. The solid straight line is the line ai+n=Q+1. 0.0
. 0.45 1
first calculate an intermediat§,, denoted byS!", in the 0.4 ]
following way: (i) Starting from a se, including all the 0.35 ]
unperturbed states, for each we move stategmn) to the 03 ]

= - 0.
set S, with m first decreasing from the largest valu€ ( X025 y
here, then increasing from the smallest val(@ero herg * 02 ]
until the condition(7) is not satisfied;(ii) for the setS, 0.15 ]
obtained, for eaclm, we do the same thing as having been 0.1 ]
done forn. In the second step, we try to move out each of the 0.05 ]

states|mn) in the setS!" to see if the condition(7) is still 0.0

satisfied and finally obtain &,". In numerical calculation,
denoting( #|(T!)"T"| ¢) asX, with | ¢) being a normalized
Vec_to_r chosen arbitrarily, Eq7) was treated in the way that FIG. 2. (a) The histogram of the distribution of components in
(a) it is regarded as correct, K,<10™° whenn<10% or e nonperturbative parts of eigenfunctions whose relative localiza-
Xy <Xy 1000 When n=10% (b) it is taken as incorrect, if tion lengthR,, are close to 1. Total 53832 components were used in
X>1000 whem<10%, or X,>X,_ 1000 Whenn=10% Nu-  the calculation of the histogram. The solid curve is the Gaussian
merically, the same NPT regions have been obtained in difdistribution predicted by GOEb) Same as in(a) for the distribu-
ferent ways of trying to move out unperturbed stateSh, tion of components in thB, regions of the nonperturbative regions
which usually give different" regions(see Fig. 1 for an (81499 components usedc) Same as irfa) for the distribution of
example. Numerical calculations show that good approxi- components irs;, regions(65 905 components used

mations to NPT regions of perturbed states can in fact be

obtained by using™ in place ofS™", the calculation time matrices. For NPT parts of eigenfunctions satisfying
of which is much shorter. |IR,—1]/<0.02, where 15%a=<350 and\=0.5,0.6...,1.0,

To study statistical properties of NPT parts of eigenfunc-the distribution of their components, denoted tx), has
tions that are sufficiently ergodic, we make use of their relabeen found in good agreement with the prediction of GOE
tive localization lengttR,,. Denoting the normalized values for M-dimensional matrices in the limil — o,
of Wpn=|(mn|a)|? in the NPT region ofi@) with N, un-
perturbed states bw,n, namely, W/n=Wnn/A, where A B o
=3 \ypWimn With the summation over the unperturbed states feoe(X)= \/?exq X°12), (13
in the NPT region of |a), R, is defined by R, m
= CE/CGOE, Whel’e

wherex=_Cg; VM with Cp; being components of the eigen-
N , , functions of the random matric¢g] [Fig. 2(a)]. In the cal-
Ca=exp( _NEP:T Wmn'”""mn) (120 culation of f(x), since different eigenfunctions may have
different numbers of components in their NPT parts and the
andCgoe~N,/2.07 is the prediction of RMT for the Gauss- average absolute values of components in cases of different
ian orthogonal ensemblg&OE) of N -dimensional random \ are different, we first put components of the eigenfunctions
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11l. NONPERTURBATIVE AND PERTURBATIVE PARTS
1.0 OF EIGENFUNCTIONS
5.508 | In this section, we study properties of NPT and PT parts
Q? ’ of eigenfunctions, when the underlying classical system un-
“ dergoes a crossover from integrability to chaos. In Sec. Il A,
g 067 we discuss numerical results obtained in the middle of en-
g ergy region. Some properties of eigenfunctions manifested in
z 045 the variation of localization length are discussed in Sec.
o I B.
102r
A. Structure of eigenfunctions and their NPT regions

When the parameter increases from zero, the integrabil-
ity of the classical counterpart of the Lipkin model will be
destroyed gradually. A measure of the destruction is given by

FIG. 3. Variation ofR, the average relative localization length of the fraction of chaotic volume in phase space denoteg by
nonperturbative parts of eigenfunctions in the middle of energy refFigure 3 shows the variation @f with A in the energy re-
gion (a=186-310)(squares connected by solid lindogether we  gion between the perturbed energi€g and Egy of the
show the values of. (circles connected by dotted Ii)JEhe Brody corresponding quantum system. The valueg.afias calcu-
parameterg (triangles connected by dashed lipandL (dashed- lated by making use of Monte Carlo methods, in the same
dotted curvgin the same energy region. way as in Ref[7]. Together, in Fig. 3, we show the variation

of the Brody parameteB, which were obtained by the best
of the samex together and normalize them, then, put data offitting of the cumulative form of the Brody distribution
different A together and normalize them again. pa(s,B) to the cumulative nearest-level-spacing distribution

The requirement thgR,—1/<0.02 itself does not guar- *p(x)dx in the corresponding energy region, where
antee the closeness between the statistics of the NPT parts of

the eigenfunctions and the prediction of RMT. For example, pe(s,B)=As’ exp —Bs!h), (14)
similar toR,, one can introduce relative localization length
in the B, regions of NPT regions, denoted R)Z For those
B, regions satisfyingRﬂ— 1|<0.02, the distribution of their
components has been found higher tligag(x) in the small
component regiofisee Fig. 8)]. This means that the abso- To obtain a better statistics, we have used data obtained from
lute values of the components in tg subregions of the PT ten values ofH(\') with A" close tox (J\<0.025). We
regions are smaller than those inside the NPT regions, ogee that the variation g8 is quite irregular and, wheR is
average, which has also been observed numerically in theetween 0.6 and 0.7, the values @fare quite lower than
WBRM model[13,35. In fact, the statistics of components u~1.0. The cumulative nearest-level-spacing distributions
in some regions smaller than tl8y regions has also been of A=0.4, 0.6, and 0.8 are presented in Fig. 4, in compari-
found to deviate fromfgog(x). For example, consider the son with the prediction of the Wigner surmi§g] (dotted
smallestS,={|k):k=p;,p1+1, ... p,} satisfying the con- curves, py(s)=(ms/2)exp(- wsl4), and the best fitting cu-
dition (4), denoted byS®, which were used in Ref.13].  mulative Brody distributiongdashed curves

Similar to the case 0B, regions, we have calculated the ~ The average of relative localization lengk), of NPT
distribution of components in thos& regions whose rela- parts of eigenfunctions, denoted By can be used to char-
tive localization lengthR¢ is close to 1, and have found a acterize the behavior of the quantum system in the process of
small deviation from the form ofgog(x) in the smallx  the underlying classical system changing from an integrable
region[Fig. 3(c)]. Numerically,S;, regions have been found system to a chaotic one. Variation Rfwith \, with average
usually a little larger than the corresponding NPT regions. taken over the states ef=186-310, is shown in Fig. 3 by

0.0 vy 1 1 1 1 1 1 1 1
00 01 02 03 04 05 06 0.7 08 09 1.0
A

2+

A=(1+p)B, B=TI'*A 15

. (15

L0 L L 5 2 T T T AN B B T FIG. 4. Cumulative nearest-
g0.9 - ® / T ® 7 T © ] level-spacing distributions in the
.go‘s- j,; T T ] middle of energy region(solid
2071 T T ] curves; (@ A=0.4, (b) A=0.6,
go.ﬁ - WO—————1 W1 " 1 and(c) A=0.8. The nearest-level-
g0.5- T ' T ] spacing distributions themselves
Ho4r 05 T 05y T 05 17 are shown in the insets. The pre-
L T T ] diction of Wigner surmise are
502 r/,-' : T // y T ] given by dotted curves and the

oxf 4 W s T o2 3 T 004 1 best fitting Brody distributions

and their cumulative forms are

0.0 ‘ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
00 05 10 15 20 25 3.0 00 05 1.0 1.5 20 25 30 00 05 1.0 1.5 20 25 3.0 35
S S S shown by dashed curves.
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400 L S e B just the unperturbed statk) of k=«. In this case,R,
~2.07. With increasing., the sizes of both the NPT regions
and the main bodies of eigenfunctions will enlarge. Figure 3

shows that the increasing &f starts at\ ~0.09. The varia-
tion of (N,) is given in Fig. 5. Numerically, for a fixed,
perturbed states with similar energies have been found hav-
ing NPT regions with qualitatively similar structures.
Examples of the shapes of NPT regions and tBgirre-
gions of|a=260) in cases of from 0.05 to 0.7 are given in
Fig. 6, with the main bodies of the eigenfunctions shown
schematically by crosses. In Fig(§, the NPT region is
roughly along a slanted straight line with a slope close to
—2/3. This is because the energies of the unperturbed states
o |mn) in the NPT region are close ¢, With €;/€e,~2/3.
FIG. 5. Variation of(N,), the average number of unperturbed \yjhen the classical system is mixed, eigenfunctions have
states in the nonperturbative regions of perturbed states in thSeen found composed of three parts, namely, main bodies

middle of energy regiond=151-350)(circles connected by solid . . . . PO . .
curve. Triangles(connected by dotted linend squaregconnected localized in theirB, regions, tails inside thB, regions with

by dashed lineshow the values o, for the ground state and the '€latively slow decaying speed, and tails outside of Ehe
ninth excited stateq= 10), respectively. regions with relatively fast decaying speed. The phenomenon

that the main bodies do not occupy the full NPT regions is
related to the fact that the GBWPT, derived from the

) eigenequation of energy, does not consider the destruction of
most s.aturaE(.j and Flosem when) is larger than 0.7. The the other conserved quantities ldf,. As to the behavior of
behavior ofR is obviously more regular thag. For A be-  gjgenfunctions outside of tHg, regions, as predicted by the
tween 0.2 and 0.7, the values pfare closer tiR than to3.  GBWPT, exponential-type decay has been found, on average
(The behavior ofs has been found more regular, when either(rig. 7). Eigenfunctions ergodic or almost ergodic in their
the energy region is enlarged or the particle numflels NPT regions have also been found, whose eigenenergies are
increased to _40 so that more energy levels are taken intp, avoided-level-crossing regions.

account. But, in both cases, the behaviogdias been found In the case of the classical system being almost chaotic,
still more irregular tharR and the values of in the param-  namely,\=>0.5, most of the eigenfunctions have been found

eter regime 0.6\ <0.7 obviously smaller thaRk as well)  ergodic or almost ergodic in their NPT regions, wRHarger

For comparison, Fig. 3 also gives the variationLef(L,),  than 0.9(Fig. 3. In agreement with the feature 6{x) at

the average of the relative localization length of the wholesmallx shown in Fig. 2b), for eigenfunctions ok =0.5, the

eigenfunctions defined in the ordinary way. values ofw,,, in the G, subregions of their PT regions have
Now let us discuss detailed properties of NPT parts ofbeen found smaller than those in their NPT regions, on av-

eigenfunctions in the middle of energy region. When the pererage. Meanwhile, there are also some eigenfunctions not

turbation is sufficiently weak, the ordinary perturbation fully ergodic in their NPT regions, with large components in

theory works and the NPT region of a perturbed stateis  the smalln, or smallm, or m+n~() regior(s), such as the
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20 T FIG. 6. Nonperturbative regions of the per-
‘}‘0 >3 turbed statesa=260) in cases of different per-
=15 1% _
‘:\L 3« turbation parametek, (a) A=0.05, (b) A=0.1,
10 F -+ “:5\5\0\\ (©) A=0.2, (d) A=0.3, (&) A\=0.5, and(f) A
st 1 \330\\ =0.7. Circles in(a) and(b) indicate positions of
° ~ S the unperturbed statdmn) in the nonperturba-

]

30 p
25 -
20
=15

tive regions. Solid and dashed curves(m—(f)
show the rough boundaries of the nonperturbative
regions and theiB, regions, respectively. The
main bodies of the eigenfunctions are shown
schematically by crosses. Length of the crosses,
with centers at ifa,n), are proportional tow,,,
=|(mn|a)|?. For the eigenfunctions itia)—(f),
Sw= ZcrosWmn~0.97.
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FIG. 7. The values of Iwy,, with n=0 (circles connected by FIG. 9. Variation ofL, , the relative localization length of whole

dotted line and withn= 10 (squares connected by dashed Jife  eigenfunctions, withA for «=203 (solid curvg and a=204
the eigenfunction shown in Fig.(§. The vertical dotted straight (dashed curve
lines and dashed straight lines show the boundaries of the nonper-

turbative region in the corresponding cases, respectively. plane, which is due to the fact that the value$Bf— E2| are

o _ _ large for largen and the elements of the perturbatigrare

one shown in Fig. @), which makeR less than 1. To under- relatively small in the neighborhood of (0,@3ee Fig. 8

stand this phenomenon, we have studied the valueg'df  variation of the sizes of NPT regions af=1 and 10 with\
are also shown in Fig. 5.

o= 2 (M| pVymn, (16)
mn B. Some features of eigenfunctions manifested in the variation

which are plotted schematically by the length of the crosses of relative localization length

in Fig. 8. We see that the perturbativrhas relatively small Some features of eigenfunctions can be seen in the varia-
elements in then+n~() region and only one of its four tion of their relative localization length, with the pertur-
terms has large elements in the snmalbr smalln region. bation parametex. Two examples are given in Fig. 9, which

Nonperturbative regions of low lying states have featuresshow large fluctuations df, due to the “exchange” of states
different from those in the middle of energy region. For ex-in avoided-level-crossingALC) regions. Detailed variation
ample, sinceE; is lower thanEg and the distanc{aEl—Egl of L, and R, in the parameter regime G2 <0.5 are
increases with increasing, the sizes of the NPT regions of shown in Figs. 1() and 1@dc), respectively. Comparing
perturbed ground states are much smaller than those in theith the variation of eigenenergies shown in Fig(dQwe
middle of energy region. An interesting feature of the NPTsee that peaks df, andR, indeed correspond to ALC re-
regions of perturbed ground states 0£0.5 is that they gions. Figure 1(®) shows that the value df, usually in-

move to some regions above the poift0) in the (m,n) creases steadily outside of ALC regions.
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components usually lie in thex(;n) regions where the per-
turbation matrix elements are relatively small.

IV. CONCLUSIONS AND DISCUSSIONS

In this paper, we have studied nonperturbative and pertur-
bative parts of energy eigenfunctions in a schematic shell
model, when the underlying classical system undergoes a
transition from integrability to chaos. We have introduced a
definition of nonperturbative parts of eigenfunctions, with
the corresponding perturbative parts expanded in a conver-
gent perturbation expansion by making use of the nonpertur-
bative parts. The nonperturbative parts have been shown to
have the property that, when the underlying classical system
is chaotic, for those nonperturbative parts of eigenfunctions
whose relative localization length are close to 1, the statistics
of their components is in agreement with the prediction of
random-matrix theory.

Nonperturbative parts of eigenfunctions in different per-
turbation parameter regimes have been studied numerically.
With increasing perturbation parameter, sizes of the nonper-
turbative parts have been found to increase, with the main
: i : ; : : : bodies of the eigenfunctions usually lying within tBg re-

0'00,2 024 028 032 036 04 044 048 gions of their nonperturbative regions in the whole perturba-
tion parameter regime, and within their nonperturbative re-
gions when perturbation is not weak. When the underlying
classical system is mixed, most of the eigenfunctions have
been found to be composed of three parts, roughly speaking,
main bodies localized in the nonperturbat®efegions, tails
inside the nonperturbativ®{ regions, and tails outside the

Figure 1Qc) shows that the values &, at some of the nonperturbativéd, regions; meanwhile, some of the eigen-
peaks exceed 1, e.g., the one\at0.3, i.e., ALC can induce functions have been found ergodic in their nonperturbative
“ergodicity” of eigenfunctions. To show this phenomenon regions due to avoided level crossings. When the classical
more clearly, in Fig. 11 we show the main bodies of thesystem becomes chaotic, most of the eigenfunctions have
eigenfunctions ofa=203 and 204 before, at, and after the been found ergodic or almost ergodic in their nonperturba-
ALC at A~0.3, respectively, together with the correspondingtive regions. Numerical results show that the average relative
NPT andB; regions. The mixing and separation of the mainlocalization length of nonperturbative parts of eigenfunctions
bodies of the two eigenfunctions can be seen quite clearlys useful in characterizing the behavior of the quantum sys-
with positions exchanged after the ALC. Figuregi0and  tem, in the process of the underlying classical system chang-
10(c) show that there are also some eigenfunctions whgse ing from a mixed system to a chaotic one.
andR,, are relatively small compared with the other levels of Numerical results presented in this paper show that the
the same\, e.g., theR,p3 in the neighborhood ok =0.325.  division of eigenfunctions into perturbative and nonperturba-
For such eigenfunctions, it has been found that their largestve parts is indeed useful in revealing interesting properties

LML & UL B B B B |

(I A D A

FIG. 10. (a) Variation of E, with N (a=201-206).(b) Varia-
tion of L, with A for =203 (solid curvg and a= 204 (dashed
curve. (c) Same agb) for R,, .

25
20 =g

. FIG. 11. Schematic plotby crosses of the
N main bodies of the eigenfunctions af=203 and
204, with respect to their nonperturbative regions
and the corresponding; regions, before and af-

. ter the avoided level crossing B&=0.3 in ().
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of the eigenfunctions. The numerical calculation of the divi-for the perturbative parts of eigenfunctions can always be
sion is somewhat time consuming. However, when approxisatisfied when the corresponding nonperturbative parts are
mate results are required only, the calculation time can béaken large enough, separation of eigenfunctions into pertur-
reduced considerably by, for example, making use of thdative and nonperturbative parts can be made in an arbitrary
intermediate regions discussed in Sec. Il of this paper. Arsystem, even when the Hilbert space is infinite. The problem
analytical study of the convergence condition in the GBWPTis how much useful information the separation could supply.
may reduce the calculation time as well. Although the defi-In fact, for some systems with infinite Hilbert spaces, e.g.,
nition of the division adopted in this paper is better than thethe quartic anharmonic oscillator, the separation does not
one used previously, it is possibly not the final one, since theupply as much information as in the case of finite Hilbert
separation of th&"" subregion into its subperturbative and space. For such systems, in order to obtain more useful in-
subnonperturbative parts is not made completely from genformation, the present form of the GBWPT should by modi-
eral requirements, but, in fact, to some extent from numericafied, which needs further research work.
results obtained. A possible improvement of the definition
may be including all the locally m|n|me$2'“ regions, the ACKNOWLEDGMENTS
calculation time of which would be considerably long.
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